Swin Transformer for Object Detection - Demo Test
on Projects
1. Checkpoint
README.md
Download configs and .pth file
2. In the Docker
@ /mmdetection/checkpoints
@ /mmdetection/configs/swin
3. Tutorial
3.1. mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco
from mmdet.apis import init_detector, inference_detector
import mmcv
# Specify the path to model config and checkpoint file
config_file = 'configs/swin/mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco.py'
checkpoint_file = 'checkpoints/mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco_20210903_104808-b92c91f1.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'demo/demo.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='demo/result_mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco.jpg')
# test a video and show the results
video = mmcv.VideoReader('demo/demo.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
3.2. mask_rcnn_swin-t-p4-w7_fpn_1x_coco
from mmdet.apis import init_detector, inference_detector
import mmcv
# Specify the path to model config and checkpoint file
config_file = 'configs/swin/mask_rcnn_swin-t-p4-w7_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/mmask_rcnn_swin-t-p4-w7_fpn_1x_coco_20210902_120937-9d6b7cfa.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'demo/demo.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='demo/result_mask_rcnn_swin-t-p4-w7_fpn_1x_coco.jpg')
# test a video and show the results
video = mmcv.VideoReader('demo/demo.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
3.3. mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco
from mmdet.apis import init_detector, inference_detector
import mmcv
# Specify the path to model config and checkpoint file
config_file = 'configs/swin/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py'
checkpoint_file = 'checkpoints/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco_20210908_165006-90a4008c.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'demo/demo.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='demo/result_mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.jpg')
# test a video and show the results
video = mmcv.VideoReader('demo/demo.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
3.4. mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco
from mmdet.apis import init_detector, inference_detector
import mmcv
# Specify the path to model config and checkpoint file
config_file = 'configs/swin/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py'
checkpoint_file = 'checkpoints/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco_20210906_131725-bacf6f7b.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'demo/demo.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='demo/result_mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.jpg')
# test a video and show the results
video = mmcv.VideoReader('demo/demo.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
3.5. tools/test.py
python tools/test.py \
configs/swin/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py \
checkpoints/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco_20210906_131725-bacf6f7b.pth \
--show-dir mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_results